
Department of Geomatic Engineering, University College London

Analytical Solar Radiation Pressure

and Thermal Re-radiation Modelling

Software

Version 5.05

User Manual

M. Y. Gulamali and M. K. Ziebart

29 September 2006

Department of Geomatic Engineering
University College London
Gower Street
London
WC1E 6BT
United Kingdom

Contents

1 Introduction 3

1.1 Description . 3

1.2 Block modelling . 3

1.3 Parallelisation . 4

2 Compilation 5

2.1 Introduction . 5

2.2 Organisation of the software . 5

2.3 Compilation options . 5

2.4 Microsoft Visual Studio . 5

2.5 UNIX based compilers . 9

3 Usage 10

3.1 Introduction . 10

3.2 Pixel array orientation schemes . 10

3.2.1 Earth-Probe-Sun angle range 10

3.2.2 Sphere points algorithm . 11

3.3 The parameter file . 12

3.4 The spacecraft description file . 12

3.4.1 Planar polygons . 14

3.4.2 Planar circles . 14

3.4.3 Planar rings . 15

3.4.4 Cylinders . 16

1

3.4.5 Spheres . 16

3.4.6 Paraboloids . 16

3.4.7 Truncated paraboloids . 17

3.4.8 Cones . 18

3.4.9 Truncated cones . 19

3.5 The output file . 19

3.6 Checkpointing . 20

4 Summary 21

A Tables 22

B Software history 24

C Compiling Microsoft Visual Studio applications with MPI 27

D Execution on high performance computing resources at UCL 31

D.1 Installing the software . 31

D.2 Running the software . 32

D.3 Managing jobs . 33

E Execution on HPCx 34

E.1 Installing the software . 34

E.2 Running the software . 35

E.3 Managing jobs . 35

References 36

2

1 Introduction

1.1 Description

Software to simulate the non-conservative forces acting upon a spacecraft has been
developed by members of the Department of Geomatic Engineering [3] at University
College London. This software may be used to compute the accelerations upon a
complicated spacecraft structure due to solar radiation pressure (SRP) and thermal
re-radiation (TRR), as a function of the orientation of the Sun in the spacecraft’s
frame of reference. It may also be used to determine the area profile of a spacecraft
from different directions.

The analytical SRP and TRR modelling software described in this manual simulates
a source of irradiance (i.e. the Sun) as a pixel array. The pixel array is oriented
at a range of locations around the spacecraft depending on the specified orientation
scheme (see Section 3.2). A ray tracing algorithm is then used to determine if
light rays from individual pixels in the array strike the spacecraft. If spacecraft
components are found to be irradiated by the light rays then their contribution to
the overall SRP and/or TRR acceleration is computed. Secondary reflections and
shadowing by features of the spacecraft is also taken into account. Thus the resultant
accelerations upon a spacecraft due to SRP and/or TRR forces are determined for
the entire range of orientations of the pixel array, and are output to a comma
delimited ASCII file. Readers are referred to Ziebart (2004) [19] and Adhya (2005)
[1] for a more comprehensive account of the algorithms used to model the SRP and
TRR accelerations in this software. The fidelity of earlier versions of the software
has been discussed by Ziebart et al. (2003) [18].

The algorithm used to determine the area profile of a spacecraft is similar to that
above, however, instead of computing the accelerations due to SRP and/or TRR,
the software simply counts the number of pixels illuminating the spacecraft for a
given orientation of the pixel array. This is then scaled by the size of each pixel to
determine the area profile of the spacecraft.

This document provides a manual for the modelling software, describing how to
configure, compile and execute it on a range of computational platforms.

1.2 Block modelling

This version of the analytical SRP and TRR modelling software has been optimised
using the block modelling approach first introduced in version 4.00. Block modelling
reduces the execution time of the software by grouping components together into
“blocks”. Subsequently, during the ray tracing phase of the algorithm, if a block is
not intersected by a ray of light from the pixel array, then the entire group of com-

3

ponents associated with that block may be considered to have not been intersected
by the ray of light, and consequently will not be irradiated. For large spacecraft
structures, it has been found that block modelling can reduce the execution time
by at least a half. Block modelling is described in more detail by Sibthorpe (2006)
[16], and may be switched on or off at the compilation stage (see Section 2.3).

1.3 Parallelisation

The analytical SRP and TRR modelling software is capable of being run on mul-
tiprocessor computing resources supporting the Message Passing Interface (MPI)
Version 1 [7]. Parallelisation is achieved by concurrently computing the SRP and
TRR forces upon a spacecraft for a range of orientations of the pixel array. In gen-
eral, this serves to reduce the overall execution time. However, due to the nature of
the parallelisation scheme, this may not be practical when the spacecraft structure
consists of many components (> 1000) and the computing resource has few pro-
cessors (< 32), because communication between processors will then overcome any
advantage of concurrent execution. Parallelisation may be switched on or off during
the compilation stage (see Section 2.3).

4

2 Compilation

2.1 Introduction

The analytical SRP and TRR modelling software is written in C++, consequently
a C++ compiler is required in order to compile it from the source code. The MPI
Version 1 libraries are also required to compile and execute the parallelised version
of the software. The following subsections describe how to configure and compile the
software for a number of different operating environments (i.e. Microsoft Windows
and UNIX based machines).

2.2 Organisation of the software

The source code for the analytical SRP and TRR modelling software is organised
into a number of subdirectories under the parent directory as follows:

Directory Contents

include C++ definitions and header files.
parameters Example parameter definition files.
src C++ source files.
userfiles Example spacecraft description files.

A Makefile also resides in the parent directory. This is required to compile the
software under a UNIX based operating system using the GNU Make [6] utility (see
Section 2.5).

2.3 Compilation options

Prior to compilation, a number of parameters may be adjusted to control various
aspects of the algorithms used in the modelling software. These parameters may
be found in the include/definitions.h header file. They are described in more
detail in Table 1 in Appendix A.

2.4 Microsoft Visual Studio

The following instructions explain how the analytical SRP and TRR modelling soft-
ware may be compiled in Microsoft Visual Studio 2005 [10] on the Microsoft Win-
dows XP platform.

5

1. Begin Microsoft Visual Studio 2005 and choose the menu option to start a new
project from existing code (File → New → Project from Existing Code. . .)

2. In the wizard choose to create a Visual C++ project and press the Next button
i.e.,

3. Enter the location of the parent directory of the analytical SRP and TRR
modelling software, and give the new project a unique name. Ensure the Add
subfolders option is chosen and then click the Next button i.e.,

6

4. Choose the Console application project option for the project type and press
the Next button i.e.,

5. In the Include Search Paths add $(ProjectDir)include. Then press the Next
button,

7

6. Ensure that the Same as Debug configuration option is ticked and then press
the Finish button,

7. Visual Studio will now create a new project with the appropriate settings to
build a serial version of the analytical SRP and TRR modelling software, e.g.,

8. Open the definitions.h file in the include folder to configure the software
(see Section 2.3). In particular be sure to set the USE MPI definition to build a

8

serial or parallelised version of the software. Refer to Appendix C for details
about incorporating MPI into the software to create a parallelised version.

9. Compile the software using the build option in the menu (Build → Build
Solution) or by pressing the F7 key.

Upon compilation, the analytical SRP and TRR modelling software should reside
as a single executable file, SRP TRR 5 05.exe, in the Debug or Release directory
(depending on the build configuration chosen). Information about running this
executable is given in Section 3.

2.5 UNIX based compilers

A Makefile has been provided in the source directory of the analytical SRP and
TRR modelling software in order to aid compilation on UNIX based computing
resources using the GNU Make utility [6]. To compile the software:

1. Open the definitions.h file in the include folder to configure the software
(see Section 2.3).

2. If a parallelised version of the software is required, please ensure that the
appropriate version (specific to the architecture of your system) of MPI is
installed. Refer to your local UNIX Guru if you are unsure.

3. Open the Makefile in the source directory in your favourite text editor.

4. Edit the BINDIR variable to refer to the directory where you wish the binary
executable to be created.

5. Edit the MPIHOME variable to refer to the path of the MPI distribution on your
system.

6. Edit the CC variable to refer to the MPI enabled C++ compiler on your system.

7. Edit the INCLUDE, LIBS and FLAGS variables to use any appropriate flags for
your specific compiler and MPI distribution.

8. Saved the edited Makefile, exit your editor and type “make” in your terminal
window in the source directory in order to compile the software.

Upon compilation, the analytical SRP and TRR modelling software should reside
as a single executable file, srp trr 5 05, in the BINDIR directory chosen in the
Makefile. A “make clean” option has also been provided to remove intermediate
object files, and a “make distclean” option has been provided to also remove exe-
cutable binary files, allowing for redistribution of the software. Information about
running the analytical SRP and TRR modelling software executable is given in the
following section.

9

3 Usage

3.1 Introduction

The analytical SRP and TRR modelling software requires several command line
arguments in order to run successfully, e.g. on MS-DOS based platforms,

SRP TRR 5 05.exe <parameter file> <spacecraft file> <output file>

where the arguments refer to the full path of a parameter file, a spacecraft descrip-
tion file and an output file, respectively. Parallelised versions of the software will
require the mpirun command [11] to run on multiple processors, e.g. on UNIX based
multiprocessor platforms,

mpirun −np <procs> srp trr 5 05 <parameter file> <spacecraft file> <output file>

where the procs argument refers to the number of processors to be used. The
remainder of this section describes the content and format of the parameter file, the
spacecraft description file and the output file in more detail. Appendix D describes
how to execute the software on high performance computing resources maintained
at UCL.

3.2 Pixel array orientation schemes

One of the parameters that must be set for the execution of the analytical SRP and
TRR modelling software is the pixel array orientation scheme. The scheme describes
how the pixel array is orientated around the spacecraft during successive iterations
of the force modelling algorithms. This version of the software incorporates two
different orientation schemes which are chosen and configured through the parameter
file (see Section 3.3).

3.2.1 Earth-Probe-Sun angle range

This pixel array orientation scheme computes the SRP and TRR accelerations upon
a spacecraft as a function of the Earth-Probe-Sun (EPS) angle. This is defined
as the angle between the Earth and the Sun in the spacecraft body-fixed-frame,
as illustrated in Figure 1. Thus this scheme orients the source of luminance (i.e.
the Sun) in the Z-X plane, rotating it around the positive Y-axis with successive

10

x

z
spacecraft

Sun

Earth

θEPS

Figure 1: Earth-Probe-Sun (EPS)
angle, θEPS, defined as the angle be-
tween the Earth and the Sun in the
spacecraft body-fixed-frame. Here,
the X-axis points along track, the
Y-axis points across track and the
Z-axis points towards the Earth.

iterations of the modelling algorithms. The starting angle, increment angle, and
final angle associated with the rotations, must be specified in the parameter file.

It is possible to simulate a source of luminance rotating around the spacecraft in
a plane other than the Z-X plane by applying a perturbation to this orientation
scheme. The perturbation acts to reorient a quaternion axis defined to be perpen-
dicular to the Sun-spacecraft vector, and in the Z-X plane, by a specified pertur-
bation angle, δ, as shown in Figure 2. Readers are referred to Ziebart (2004) [19]
for more information about the calculations involved. The perturbation may be
performed by selecting the appropriate switch in the parameter file and specifying
the perturbation angle (see Section 3.3).

3.2.2 Sphere points algorithm

The sphere points orientation scheme positions the pixel array around the spacecraft
using an algorithm described by Saff and Kuijlaars (1997) [14]. This involves opti-
mising the range of orientations of the pixel array to cover the entire 4π steradians
around the spacecraft (see Figure 3). Consequently, this scheme allows one to com-
pute the SRP and TRR accelerations around an entire spacecraft, in 3-dimensions,
in a highly efficient manner. The total number of pixel array orientations required,
as well as the start and end indices (see [14]) must be specified in the parameter
file in order to use this scheme. In general, the total number of orientations, N , is
related to the geodesic distance, s, between points on a sphere of unit radius as:

N =
(

3.6

s

)2

where the value of the nominator was chosen through numerical experimentation by
Saff and Kuijlaars (1997) [14]. This value may be altered by setting the SP CONST
definition in the definitions file (see Section 2.3).

11

x

y

z

x'

y'

z'

δ

θ
EPS

θ
EPS

P

P'

Figure 2: Orientation of pixel array
under the perturbed EPS angle range
orientation scheme. The pixel array,
P , is rotated through the quaternion
axis by an angle of δ, to P ′. Axes
marked with primes denote the per-
turbed frame of reference. The shaded
plane denotes the perturbed plane of
EPS angle rotations.

3.3 The parameter file

The parameter file required by the analytical SRP and TRR modelling software
consists of an ASCII file defining the parameters of a run. Each line of the parameter
file consists of a keyword and a value as follows:

keyword = value

where at least a single character space must be present on either side of the equality
sign. Comments may be added to the file by beginning the comment line with two
consecutive forward slashes (i.e. “//”). These may also be used to add comments
after a keyword-value pair i.e.,

keyword = value // comment

however, their interpretation by the software is specific to the compiler that is used
and consequently this syntax for commenting is not recommended. Table 2 in Ap-
pendix A outlines the keywords used by the current version of the modelling soft-
ware, and the format of their associated values. They may be written in any order
in the parameter file, and some may even be omitted depending on the type of
pixel array orientation scheme chosen. Example parameter files may be found in the
parameters subdirectory of the software distribution.

3.4 The spacecraft description file

The spacecraft description file required by the analytical SRP and TRR modelling
software consists of an ASCII file describing the geometrical dimensions and physical
characteristics of components of the spacecraft. Several types of components may

12

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-1

-0.5

0

0.5

1

xy

z
Figure 3: The method of Saff
and Kuijlaars (1997) [14] serves
to distribute points equidistant
apart on the surface of a sphere.
Here N = 100, circles repre-
sent the points and the solid
line traces out the spiral pattern
achieved.

be modelled and the subsections below describe how they are represented in the
spacecraft description file. The coordinate system used in the file corresponds to
the Body-Fixed system (BFS) (e.g. see Figure 1).

Each component record in the spacecraft description file begins with a header line
specifying the type of component being described by that record (e.g. GENERAL,
SPHERE, CONEI etc.). Thereafter, there is a comment line consisting of a record
number, two solidi (//), a material type number, a component group number, and
possibly a comment about the component, e.g.,

3 // 001 0010 main bus +Z face

In this example the record number is 3; the material type number is 1 (any leading
zeros are ignored); the component group number is 10; and, the comment provides
some information about the component.

The material type number is required for the TRR algorithms and indicates whether
or not the surface of the component is covered in multi-layer insulation (MLI), where:

0 = component is not covered in MLI
1 = component is covered in MLI

The component group number indicates the group of components to which this
component belongs. This is used to reduce the runtime of the analytical SRP and
TRR modelling software using the block modelling approach (see Section 1.2).

Consecutive lines of the component record specify geometrical attibutes of the com-
ponent and thus are dependent on the geometrical type of the component. They are
described in more detail in the following subsections.

13

GENERAL
4 // 001 0001 pentagon covered in MLI
5
0.0 1.0 0.0

-0.951 0.309 0.0
-0.588 -0.809 0.0
0.588 -0.809 0.0
0.951 0.309 0.0

0.1 0.5

x

y

z

(0.951, 0.309, 0.0)

(0.0, 1.0, 0.0)

(-0.951, 0.309, 0.0)

(-0.588, -0.809, 0.0)
(0.588, -0.809, 0.0)

(a) (b)

Figure 4: A regular pentagon covered in MLI. (a) shows a representation of the com-
ponent in the spacecraft description file. (b) shows a schematic of the component. The
surface normal of this component is in the positive z-direction.

The final line of each component record specifies the reflectivity and specularity
coefficients, respectively, of the surface material of the component.

Example spacecraft description files may be found in the userfiles subdirectory
of the software distribution.

3.4.1 Planar polygons

Planar polygon components consist of planar, regular or irregular, polygons with
upto CARTESIANS IN POLY sides (see Table 1). They are described as a component
record with the header: GENERAL. The number of vertices of the polygon is specified
on a line after the comment line. Thereafter, a list of the positions of each of those
vertices is given, where the list proceeds in the anti-clockwise direction as one looks
down the normal onto the surface. This condition ensures that the calculation of
the surface normal is consistent with the same calculation for the other geometrical
shapes. Figure 4 shows an example of the representation of a regular pentagon
component in the spacecraft description file. Here, the surface normal is in the
positive z-direction.

3.4.2 Planar circles

Planar circle components are described in the spacecraft description file with the
CIRCLE header. Following the comment line, the radius of the circle is specified.
Thereafter the positions of the centre of the circle and two points on the circum-
ference are given. The points on the circumference are listed in an order similar to
that for the planar polygon components. An example is shown in Figure 5.

14

CIRCLE
5 // 000 0001 shiny metal circle
2.5
3.0 2.0 2.0
3.0 1.768 1.768
5.5 2.0 2.0
0.8 0.8

(3.0, 1.768, -1.768)

(5.5, 2.0, 2.0)

(3.0, 2.0, 2.0)

n̂
radius = 2.5

x

y
z

(a) (b)

Figure 5: A highly reflective and highly specular circle component of radius 2.5 units,
centred at (3.0, 2.0, 2.0) in the frame of reference. (a) shows a representation of the
component in the spacecraft description file. (b) shows a schematic of the component.
The vector n̂ points in the direction of the surface normal.

RING
6 // 000 0001 shiny metal ring
2.5
1.5
3.0 2.0 2.0
3.0 1.768 1.768
5.5 2.0 2.0
0.8 0.8

(3.0, 1.768, -1.768)

(5.5, 2.0, 2.0)

(3.0, 2.0, 2.0)

n̂ radius = 1.0

x

y
z

(a) (b)

Figure 6: A highly reflective and highly specular ring component centered at (3.0, 2.0, 2.0)
in the frame of reference. (a) shows a representation of the component in the spacecraft
description file. (b) shows a schematic of the component. The vector n̂ points in the
direction of the surface normal.

3.4.3 Planar rings

Planar ring components (or annulus components) are described in the spacecraft
description file with the RING header. The remainder of the component is specified
in a similar manner to the planar circle component but an extra line is added after
the radius of the outter circle forming the ring is specified. This line specifies the
inner radius of the ring (see Figure 6).

15

CYL_X
7 // 000 0001 dull plastic cylinder
1.0
3.0 3.0 0.0
3.0 3.0 3.0
0.4 0.1

(3.0, 3.0, 0.0)

n̂

radius = 1.0(3.0, 3.0, 3.0)

x

y
z

(a) (b)

Figure 7: A cylinder component. (a) shows a representation of the component in the
spacecraft description file. (b) shows a diagram of the component. The vector n̂ points
in the direction of the surface normal.

3.4.4 Cylinders

Cylinder components are described in the spacecraft description file with the CYL X
header. Cylinders have a circular cross section with open ends and, consequently,
must be capped with planar circle components at each end in order to specify a
closed cylindrical object. The surface normal of a cylinder is assumed to be pointing
outwards, perpendicularly away from the cylinder axis (see Figure 7b).

The dimensions of a cylinder component are recorded in the spacecraft description
file by specifying the radius of the cross-section of the cylinder, followed by the
positions of the end-points of the cylinder axis (see Figure 7a).

3.4.5 Spheres

Spherical components are described using the SPHERE specifier in the component
header of a spacecraft description file. The radius of the sphere is given on the line
after the comment line, followed by the position of the centre of the sphere on the
next line. This is shown in Figure 8.

3.4.6 Paraboloids

‘Inward’ or ‘outward’ pointing paraboloid components are specified in the space-
craft description file using PARABI or PARABO in the component header, respectively.
Paraboloids have a circular open end. Their geometry is recorded in the description
file by specifying their depth (the distance between the apex and the base) after the
comment line. Then, on the next line, the radius of the open end of the paraboloid

16

SPHERE
8 // 000 0001 shiny metal ball
2.0
3.0 3.0 3.0
0.9 0.9

radius = 2.0

(3.0, 3.0, 3.0)

x

y

z

(a) (b)

Figure 8: A sphere component. (a) shows a representation of the component in the
spacecraft description file. (b) shows a diagram of the component.

PARABO
9 // 000 0001 paraboloid surface
3.0
1.0
3.0 3.0 3.0
3.0 3.0 0.0
0.4 0.1

(3.0, 3.0, 0.0)

n̂

radius = 1.0

(3.0, 3.0, 3.0)

depth = 3.0

x

y
z

(a) (b)

Figure 9: An ‘outward’ pointing paraboloid component. (a) shows a representation of
the component in the spacecraft description file. (b) shows a diagram of the component.
The vector n̂ points in the direction of the surface normal.

is given. Finally, the position of the centre of the open end, followed by the position
of the apex is given. An example of an ‘outward’ pointing paraboloid is shown in
Figure 9. An ‘inward’ pointing paraboloid would look identical but the surface of
consideration would then be the inner (concave) hull.

3.4.7 Truncated paraboloids

‘Inward’ or ‘outward’ pointing truncated paraboloid components are specified in the
spacecraft description file using a TPARABI or TPARABO specifier in the component
header, respectively. Similar to paraboloid components, truncated paraboloid com-
ponents have a circular open end, but also have a circular truncated end. They are
described in the spacecraft description file by specifying the depth of the paraboloid
on the line following the comment line; the radius of the open end on the next line;
and, the height (the vertical distance between the open end and the truncated end)
on the line after. Finally, the position of the centre of the open end, followed by the

17

TPARABI
10 // 000 0001 truncated paraboloid
3.0
1.0
3.0 3.0 3.0
3.0 3.0 0.0
0.4 0.1

(3.0, 3.0, 0.0)

n̂
radius = 1.0

(3.0, 3.0, 3.0)

height = 1.0

x

y
z

depth = 3.0

(a) (b)

Figure 10: An ‘inward’ pointing truncated paraboloid component. (a) shows a repre-
sentation of the component in the spacecraft description file. (b) shows a diagram of the
component. The vector n̂ points in the direction of the surface normal.

CONEO
11 // 000 0001 ice cream cone
3.0
1.5
3.0 3.0 3.0
3.0 3.0 0.0
0.4 0.1

(3.0, 3.0, 0.0)n̂

radius = 1.5

(3.0, 3.0, 3.0)

depth = 3.0

x

y
z

(a) (b)

Figure 11: An ‘outward’ pointing cone component. (a) shows a representation of the
component in the spacecraft description file. (b) shows a diagram of the component. The
vector n̂ points in the direction of the surface normal.

position of the apex of the paraboloid is given. This is illustrated in Figure 10.

3.4.8 Cones

A cone shaped component is assumed to have an open circular cross-section (see
Figure 11). It may be specified in the spacecraft description file by using the CONEI or
CONEO keyword in the component header, depending on whether the surface normal
of the cone is pointing ‘inwards’ or ‘outwards’, respectively. The geometry of the
cone is specified by giving its depth on the line after the comment line. The radius
of the open end of the cone is given on the next line. The position of the open end
of the cone, and the position of the apex are given on the following lines.

18

TCONEO
12 // 000 0001 truncated cone of MLI
3.0
1.5
1.0
3.0 3.0 0.0
3.0 3.0 3.0
0.1 0.5

(3.0, 3.0, 0.0)n̂

radius = 1.5

(3.0, 3.0, 3.0)

height = 1.0

x

y
z

depth = 3.0

(a) (b)

Figure 12: An ‘outward’ pointing truncated cone component. (a) shows a representation
of the component in the spacecraft description file. (b) shows a diagram of the component.
The vector n̂ points in the direction of the surface normal.

3.4.9 Truncated cones

The truncated cone component is specified in the spacecraft description file with
TCONEI or TCONEO in the record header, representing an ‘inward’ pointing truncated
cone or an ’outward’ pointing truncated cone, respectively. As with the cone compo-
nent, a truncated cone is assumed to have a circular open end. After the comment
line, the depth of the truncated cone (distance between open end and apex) is given.
The radius of the open end of the component is specified on the next line, followed
by the vertical height of the component on the line after. The position of the centre
of the open end and the position of the apex are given on the following lines. An
example of an ‘outward’ pointing truncated cone component is shown in Figure 12.

3.5 The output file

The results of the analytical SRP and TRR software are output to the file specified
as the third argument in the command line (see subsection 3.1). The file is formatted
as a comma separated value (CSV) file.

Each output file begins with a header line that describes each of the values in a
line. Thereafter the actual results are given, with one line of results per pixel array
orientation. Each line consists of: the latitude of the Sun in the BFS reference
frame in degrees; the longitude of the Sun in the BFS reference frame in degrees;
the accelerations due to SRP and/or TRR along the BFS x-axis, y-axis and z-axis,
respectively, in units of ms−2; and, the EPS angle of the Sun in degrees. If the area
profiling option is chosen (see Section 1.1) the accelerations are replaced with the
area profile (in units of m2) of the spacecraft.

19

3.6 Checkpointing

This version of the analytical SRP and TRR software includes a checkpointing fea-
ture which ensures that the results of a run are not lost should the software terminate
unexpectedly (for example, by having its process thread terminated). This feature
immediately writes results from any process/node to a file with the same path and
name as the output file but with a “.chk” suffix. This file is only deleted once the
output file has been successfully written by the software.

The checkpoint file is a space delimited ASCII file, with each line corresponding to
the results obtained from a specific orientation of the pixel array. A header line
describes each of the values in a line. Each line consists of: the processor/node
number returning the result; the index of the orientation scheme used in the run;
the latitude and longitude of the Sun in the BFS reference frame in degrees; the
EPS angle of the Sun in degrees; and finally, the accelerations due to SRP and/or
TRR along the BFS x-axis, y-axis and z-axis, respectively, in units of ms−2. If the
area profiling option is chosen (see Section 1.1) the accelerations are replaced with
the area profile (in units of m2) of the spacecraft.

20

4 Summary

This document has described the analytical SRP and TRR modelling software de-
veloped by members of the Department of Geomatic Engineering [3] at University
College London. In particular, the practical aspects of the software (i.e. configur-
ing, compiling and running) have been described for both the Windows and UNIX
operating platforms. Readers are referred to the references herein for the theoretical
aspects of the software.

The production of this version of the analytical SRP and TRR modelling soft-
ware and this associated manual was made possible through a grant (grant number
GR/T18608/01) from the Engineering and Physical Sciences Research Council (EP-
SRC) [4] to whom the authors are grateful. We would also like to thank the UCL
Research Computing services for the use of their high performance Altix resource
[15].

The following appendices provide more information about specific issues with the
software, including how to compile MPI applications in Microsoft Visual Studio, and
how to execute the analytical SRP and TRR modelling software on high performance
computing resources maintained at UCL.

21

A Tables

Table 1: Compilation options for analytical SRP and TRR modelling software

Definition Description

VERSION Version number of software
TINY Constant used in numerical stability tests
M PI The value of Pi (π)
M PI 2 π/2
M PI 4 π/4
D2R Conversion factor for degrees to radians (π/180)
R2D Conversion factor for radians to degrees (180/π)
MAX CHARS Maximum number of alphanumeric characters in a string
SOL IRR Solar irradiance [Wm−2]
LIGHT Speed of light in vacuo [ms−1]
EPSILON Emissivity of MLI
EPSILON EFF Effective emissivity between MLI and spacecraft interior
SIGMA Stefan-Boltzmann constant [Wm−2K−4]
T SC Temperature of spacecraft bus interior [K]
BUFFER Buffer distance added to limits of pixel array [m]
CARTESIANS IN POLY Maximum number of vectors used to describe a polygon
MAX COMPS Maximum number of components in a spacecraft
USE BLOCK MODELLING Flag to invoke block modelling routines - see Section 1.2

(0 = off, 1 = on)
VSMALL Minimum value used in block modelling routines
NOT AS VSMALL Value used in block modelling tolerances for hit detector
DIST Distance between spacecraft origin (in body-fixed frame)

and pixel array [m]
SP CONST Constant used in sphere points algorithm - see Section

3.2.2
USE MPI Flag to invoke use of MPI parallelisation - see Section

1.3 (0 = off, 1 = on)
MAX NODE Maximum number of nodes allowed during MPI execu-

tion
DEBUG MODE Flag to invoke the printing of debug statements (0 = off,

1 = on)

22

Table 2: Parameter keywords for analytical SRP and TRR modelling software

Keyword Value type Description

model type 0, 1, 2 or 3 Type of non-conservative force to model:
0 : SRP only
1 : SRP and TRR
2 : TRR only
3 : Area profile

scheme 0 or 1 Type of pixel array orientation scheme to use:
0 : EPS angle range (section 3.2.1)
1 : Sphere points algorithm (section 3.2.2)

eps start double Start of EPS angle range† [degrees]
eps finish double End of EPS angle range† [degrees]
eps delta double EPS angle increment† [degrees]
k start integer Start of sphere points index range‡

k finish integer End of sphere points index range‡

n points integer Total number of sphere points orientations to
compute‡

spacing double Resolution of pixel array [m]
sr option Y or N Flag for secondary reflections
perturbed Y or N Flag for perturbed EPS angle range†

perturbation double EPS angle scheme perturbation angle† [degrees]
mass double Mass of spacecraft [kg]
emissivity double Effective emissivity of MLI for TRR modelling

† = required by EPS angle range pixel array orientation scheme

‡ = required by sphere points algorithm pixel array orientation scheme

23

B Software history

The following table gives a brief version and edit history of the analytical SRP and
TRR modelling software.

Version Date Author Notes

10 Apr 2002 MKZ Additions for new component types: rings,
paraboloids and conics

10 Apr 2002 MKZ Ring testing completed
14 May 2002 MKZ Paraboloid testing completed

2.02 21 May 2003 MKZ Additional components: sphere
2.03 14 Aug 2003 MKZ Additional components: cone, inward and

outward pointing normals
2.04 15 Aug 2003 MKZ Additional components: truncated cones and

paraboloids, inward and outward pointing
normals

3.00 27 Aug 2003 MKZ Combined thermal and SRP modelling
3.02 20 Oct 2003 MKZ Added option to specify MLI emissivity.

Added option to compute model at higher
than an EPS angle step size of 5◦(introduced
to accommodate USAF contract to analyse
IIR model at 2◦step size)

4.00 27 Nov 2003 AS Added block modelling option to increase
computational efficiency.

4.01 29 Jan 2004 MKZ altered write data file to also output BFS
lat and lon of Sun position.

4.02 9 Feb 2004 AS Altered pixel array algorithms for easier
perturbed array generation. get limits
and get perturbed limits were reduced to
get limits2 which can project the space-
craft onto any array no matter what its ori-
entation. The pixel array loop control was
altered to handle the generation of a rectan-
gular array, and rather than being generated
in a fixed frame and then rotated out to the
correct orientation, the individual pixels are
produced by a vector sum of pixel sized incre-
ments along array local X and Y axes which
reduces the number of computations required
for each pixel from 9 products and 9 sums,
to just 6 sums – should decrease run time.

24

Version Date Author Notes

4.03 23 May 2005 MYG Code split into different .CPP and .H files ac-
cording to function/object. Allows for eas-
ier maintenance and debugging, as well as
decrease in compilation time. Input param-
eters read in through parameter file rather
than at stdin. MPI calls added to paral-
lelise SRP TRR algorithm across EPS angles.
definitions.h header file added to control
aspects of compilation. Block modelling and
MPI usage is now controlled from this header
file, as are physical and numerical constants.
Spacecraft object altered to be able to read
in spacecraft userfile. FourierTable object
introduced to record accelerations as well as
write them to file. PixelArray object intro-
duced to simulate position of pixel array in
spherical coordinates (r, lat, lon). No longer
require get limits2 or any of the perturba-
tion functions. Various changes to existing
code in order to increase performance (e.g.
change of ordering of if–else statements etc.)

5.00 25 Aug 2005 MYG Software altered to calculate accelerations for
orientations of the pixel array distributed
equidistance on a sphere in body-fixed frame.
Required command line arguments, format
of parameter file and format of output data
have also been changed.

5.01 19 Oct 2005 MYG Alterations to ParameterTable object so
that sphere points algorithm requires user
to specify attributes of algorithm (i.e.
n points, k start, k end) in parameter file
instead of geodesic distance between points
on a sphere of 1m radius. Other objects and
functions have been changed to reflect these
alterations. Thus can now use sphere points
pixel array orientation scheme for subrange
of k values.

5.02 20 Nov 2005 AS Alterations to component structure and gen-
eral/circle/ring intersection routines so that
required transformations are pre-computed
once when the userfile is first read, rather
than computing them each time for every
pixel. This is purely intended to reduce run-
time somewhat.

25

Version Date Author Notes

5.03 26 Jun 2006 MYG Added ability to output area profile of space-
craft for each orientation of the pixel ar-
ray. This feature is selected by setting the
model type option to 3 in the parameter file.
It was added to allow spacecraft area profiles
to be determined for atmospheric drag cal-
culations. Some bugs also fixed.

5.04 11 Sep 2006 MYG Checkpointing mechanisms added to the
software. This feature immediately writes re-
sults to a file, that is eventually deleted upon
completion. This ensures that the results are
available should the software terminate be-
fore completion e.g. by having its process
thread terminated.

5.05 29 Sep 2006 MYG Several bug fixes, including fixing a major
bug in PixelArray class which might have in-
correctly sized and oriented the array in the
BFS frame.

26

C Compiling Microsoft Visual Studio applications

with MPI

It can often be useful to use MPI on a computer hosting the Microsoft Windows
operating system in order to execute parallelised software. Particularly because if
the computer has a single processor the software will run as if it was running on a
multi-processor computer, thus allowing for the software to be tested, debugged and
configured in the Visual Studio environment. The following instructions describe
how to set the properties of a Microsoft Visual Studio 2005 project in order to
compile binary executables with MPI.

1. Download and install the MPICH 1 software library for Microsoft Windows
from http://www-unix.mcs.anl.gov/mpi/mpich1/mpich-nt/. The neces-
sary file is mpich.nt.1.2.5.exe.

2. Open your project in Visual Studio and open the project properties dialogue
box (choose Project → Properties. . . in the menu or press Alt-F7).

3. Set the configuration to All configurations, then add the path to the MPI
Include directory in the Additional Include Directories option of the C/C++
→ General branch,

27

4. In the Linker → General branch add the path to the MPI Lib directory in
the Additional Library Directories option,

5. In the Linker → Input branch add ws2 32.lib to the list of Additional De-
pendencies, then press the Apply button,

28

6. Set the configuration to Debug, then in the Linker → Input branch add
mpichd.lib and mped.lib to the list of Additional Dependencies,

7. In the C/C++ → Code Generation branch change the Runtime Library to
Multi-threaded Debug and press the Apply button,

29

8. Set the configuration to Release, then set the Runtime Library to Multi-
threaded in the Runtime Library option of the C/C++ → Code Generation
branch,

9. In the Linker → Input branch add mpich.lib and mpe.lib to the list of Ad-
ditional Dependencies, and press the OK button to exit the project properties
dialogue.

30

D Execution on high performance computing re-

sources at UCL

In this appendix we describe how the analytical SRP and TRR modelling software
may be compiled, configured and run on high performance computing resources
maintained at UCL. In particular, we consider the case where the software is to
be executed on the UCL Altix [15]. This is a parallel computing facility managed
by UCL Information Systems (IS) and features 56× Itanium2 1.3 Ghz/3 MB cache
processors and 112 GB shared memory, offering speeds of upto ∼ 135 GFlops.

Access to the UCL Altix is via an SSH terminal such as PuTTY [13] and requires a
username and password. This may be requested from the UCL Computing Resource
Allocation Group (CRAG) by sending an application email to their members. Full
details about the application process may be found at the following URL:
http://www.ucl.ac.uk/research-computing/community/crag/crag.html#50

Once access to the UCL Altix has been granted, files may be copied to the resource
using secure FTP (SFTP) or secure copy (SCP). Tools such as FileZilla [5] are useful
for this purpose.

D.1 Installing the software

After copying the analytical SRP and TRR modelling software to the UCL Altix,
it is recommended that the dos2unix command is run on the files in the src and
include directories, as well as the Makefile to ensure they are compatible with
UNIX.

To ensure that the software makes the most efficient use of the UCL Altix resource,
the macros in the include/definitions.h file should be appropriately set. In
particular, the USE MPI macro should be set to 1 and the MAX NODE macro should
be set to 56. See Section 2.3 for more details.

The software may then be compiled by following the instructions in Section 2.5. At
the time of writing, the appropriate values for some of the macros in the Makefile
are as follows:

Macro Value

MPIHOME /opt/modules/mpt.1.11-100
CC icc

INCLUDE -I${PWD}/include -I${MPIHOME}/include
LIBS -L${MPIHOME}/lib -lm -lmpi
FLAGS -O3 -ipo -ansi -mp -w ${INCLUDE} ${LIBS} ${DEFS}

31

D.2 Running the software

The UCL Altix uses LSF from Platform Computing [12] as a resource allocation and
queuing system. Short jobs (< 15 minutes) may be executed interactively within
the SSH terminal window, but all longer jobs (> 15 minutes) must be submitted and
run through LSF. The LSF bsub (batch submission) command is used to submit all
jobs. This may be as simple as submitting the job at the command line, e.g.

bsub -n 8 pam -mpi -auto place full path to executable/executable

A more appropriate way, however, is to create a UNIX Shell script that describes
the job that is to be executed. Such a script may then be submitted to the queuing
system with a redirection, e.g.

bsub < submission script

Each bsub command line option is stated on a new line in a submission script,
and begins with the text #BSUB. This is followed by the option specifier and, where
necessary, values for that option. More details about the possible command line
options may be found in the manual pages for the bsub command (i.e. man bsub).

Figure 13 shows an example LSF submission script for the analytical SRP and TRR
software on the UCL Altix. The first line defines the script as a C-Shell (CSH)
script. The next six lines are bsub options as follows:

-W Sets the maximum (wall clock) time the job is expected to take.

-N Sets the batch queuing system to send an email to the user when the job has
completed running.

-u Sets the email address to which all emails are to be sent.

-J Sets the name of the job.

-o Sets the name of the file to which any stdout will be piped.

-n Sets the number of processors to use.

The last five lines of Figure 13 state the actual command to be executed by the queu-
ing system. Here, the parallel application manager (pam) is used to submit the job
as an MPI parallelised application, ensuring that the software will run over several
processors. More details about this command may be found in the corresponding
manual pages (i.e. man pam). The analytical SRP and TRR modelling software is
called as described in Section 3.1.

32

#!/bin/csh
#BSUB -W 18:00
#BSUB -N
#BSUB -u user@ge.ucl.ac.uk
#BSUB -J my_job
#BSUB -o /home/disk5/user/my_job/stdout.txt
#BSUB -n 16
pam -mpi -auto_place \
/home/disk5/user/srp_trr_5_05/bin/srp_trr_5_05 \
/home/disk5/user/my_job/parameters.txt \
/home/disk5/user/my_job/userfile.txt \
/home/disk5/user/my_job/results.csv

Figure 13: An example of a LSF submission script for the UCL Altix. See text for
details.

D.3 Managing jobs

To view the list of your jobs submitted to the UCL Altix, and their status (i.e.
running or waiting to be run) use the qstat command. The -a option with this
command allows one to see the status of all jobs on the system.

To remove a job from the system, whilst it is running or whilst it is waiting to be
run, use the qdel command followed by request ID number of the job. This can be
found by using the qstat command.

Further details about both the commands above may be found on their correspond-
ing manual pages.

33

E Execution on HPCx

Here we describe how the analytical SRP and TRR modelling software may be
compiled, configured and run on the HPCx national supercomputing facility [8].
HPCx consists of several IBM eServer 575 nodes, featuring a total of 1536 × 1.5
Ghz IBM Power5 processors, with 32 GB memory per frame of 16 processors. This
offers a theoretical peak of ∼ 7395 GFlops, putting the facility at number 59 in the
Top500 list [17] for July 2006.

Access to the HPCx facilities is via an SSH terminal such as PuTTY [13] and
requires a username and password. This may be requested through the HPCx web-
site at: https://www.hpcx.ac.uk/signup.jsp The “Project Code” and “Project
Password” may be acquired from the Project Manager or Principle Investigator (PI)
managing the project.

Files must be copied to/from the HPCx servers using SFTP or SCP.

E.1 Installing the software

Before copying the analytical SRP and TRR modelling software to the HPCx servers
it is recommended that the files in the src and include directories, as well as
the Makefile, are converted to UNIX format, possibly by using a utility such as
dos2unix within Cygwin [2].

To ensure that the software makes the most efficient use of the HPCx resources,
the macros in the include/definitions.h file should be appropriately set. In
particular, the USE MPI macro should be set to 1 and the MAX NODE macro should
be set to 1024. See Section 2.3 for more details.

The software may then be compiled by following the instructions in Section 2.5. At
the time of writing, the appropriate values for some of the macros in the Makefile
are as follows:

Macro Value

MPIHOME leave blank
CC mpCC r

INCLUDE -I${PWD}/include
LIBS -lm
FLAGS -q64 -O3 -qarch=pwr4 -qtune=pwr4 ${INCLUDE} ${LIBS} ${DEFS}

34

E.2 Running the software

The HPCx system uses IBM’s LoadLeveler to build, submit and process batch jobs.
The following runtime limits have been imposed on the system:

Max. processors Max. runtime

Serial 12 hours
16 6 hours
64 6 hours
128 12 hours
1024 12 hours

All batch jobs should use multiples of 16 processors. If the number of processors
requested is not a multiple of 16, users will be charged the next largest multiple of
16 processors.

Each job to the LoadLeveler must be submitted using a job command file, which
describes the job to be submitted and contains a number of LoadLeveler keyword
statements which specify the various resources needed by the job. A comprehensive
description of job command files for various types of jobs may be found in the HPCx
user guide [9].

A job may be submitted to the LoadLeveler using the llsubmit command i.e.

llsubmit job command file

Upon submission the LoadLeveler performs a number of checks on the job command
file. If any problems are found an error message is returned and the job is not
submitted to the batch system.

E.3 Managing jobs

To view the list of jobs submitted to the HPCx system, and their status (i.e. running
or waiting to be run) use the llq command. There are usually many jobs on the
system at any one time so it is often useful to grep the results of the llq command
to view specific jobs only. For example,

llq | grep joe bloggs

will only show the status of jobs submitted by user joe bloggs.

To remove a job from the system, whilst it is running or whilst it is waiting to be
run, use the llcancel command followed by the request ID number of the job. This
can be found by using the llq command.

Other useful commands and their usage may be found in the corresponding pages
of the HPCx user guide [9].

35

References

[1] Adhya, S. (2005) Thermal re-radiation modelling for the precise prediction and
determination of spacecraft orbits, Ph.D. Thesis, Univ. of London, London,
U.K.

[2] Cygwin: http://www.cygwin.com/

[3] Department of Geomatic Engineering, University College London: http://
www.ge.ucl.ac.uk/

[4] Engineering and Physical Sciences Research Council: http://www.epsrc.ac.
uk/

[5] FileZilla: http://filezilla.sourceforge.net/

[6] GNU Make: http://www.gnu.org/software/make/

[7] Gropp, W., E. Lusk and A. Skjellum (1999) Using MPI: Portable Parallel Pro-
gramming with the Message-Passing Interface, MIT Press, Cambridge, Mas-
sachusetts, U.S.A.

[8] HPCx: http://www.hpcx.ac.uk/

[9] HPCx User Guide: http://www.hpcx.ac.uk/support/documentation/
UserGuide/HPCxuser/HPCxuser.html

[10] Microsoft Visual Studio: http://msdn.microsoft.com/vstudio/

[11] mpirun: http://www-unix.mcs.anl.gov/mpi/www/www1/mpirun.html

[12] Platform Computing: http://www.platform.com/

[13] PuTTY: http://www.chiark.greenend.org.uk/~sgtatham/putty/

[14] Saff, E.B., and A.B.J. Kuijlaars (1997) Distributing Many Points on a Sphere,
The Mathematical Intelligencer, 19, No. 1, pp. 5-11.

[15] SGI Altix 3700 at UCL: http://www.ucl.ac.uk/research-computing/
services/altix/altix.html

[16] Sibthorpe, A. (2006) Precision non-conservative force modelling for low earth
orbiting spacecraft, Ph.D. Thesis, Univ. of London, London, U.K.

[17] Top500: http://www.top500.org/

[18] Ziebart, M.K., S. Adhya, A. Sibthorpe and P. Cross (2003) GPS Block IIR non-
conservative force modelling: Computation and implications, in Proceedings of
ION GPS/GNSS 2003, Portland, Oregon, U.S.A.

[19] Ziebart, M.K. (2004) Generalised analytical solar radiation pressure modelling
algorithm for spacecraft of complex shape, Journal of Spacecraft and Rockets,
41, No. 5, pp. 840-848.

36

